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LETTER TO THE EDITOR 

Retrieval via non-equilibrium states in neural networks 

J F Fontanari and R Koberle 
Departmento de Fisica e Ci8ncia dos Materiais, Instituto de Fisica e Quimica de SLo 
Carlos, Universidade de SLo Paulo, Caixa Postal 369, 13560 SBo Carlos SP, Brazil 

Received 18 March 1988 

Abstract. We describe a simple variant of Hopfield’s or Little’s model for neural networks, 
which is able to act as an associative memory even in the heavily overloaded spin-glass 
phase, using non-equilibrium states as attractors. 

The storage capacity and retrieval properties of fully connected neural networks have 
been intensively studied both by numerical simulations and by equilibrium statistical 
mechanics (Amit et al 1987). 

One of the outstanding limitations of thermodynamical calculations is the impossi- 
bility of describing states with finite correlations with all memorised patterns. The 
number of these states, called non-equilibrium states, since they are invisible to 
thermodynamics, grows exponentially with the number of neurons N (Gardner 1986). 
They end up invading the basin of attraction of the retrieval states, i.e. states having 
finite overlap with only one memorised pattern (prototype). 

In this letter we address the question of whether there exist, or how to produce, 
non-equilibrium retrieval states for the Hopfield (1982) or Little (1974) models. 
Obviously these states have to be different from the ones mentioned above, since they 
have finite correlations with only one of the prototypes. Both though are invisible to 
thermodynamics. 

For simplicity we restrict ourselves to the zero temperature, deterministic case. If 
the neuron’s states are represented by Ising spins Si = +1 for active and Si = -1 for 
passive, the dynamics is governed by the equations 

Si(t+l)=sgn(hi(t)) i = l ,  ..., N ( l a )  
N 

hi( t )  = JijSj(  t )  
j = 1  

with 

i # j  
l P  

N @ = I  
Jij  = - c eye7 

where {,fr = f 1, i = 1 , .  . . , N }  is a set of P uncorrelated prototypes. 
This model has two phases characterised by the retrieval overlap 
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where ( )* stands for an average over initial configurations and over sets of prototypes. 
In the retrieval phase we get m b 0.97, whereas in the spin-glass phase m s 0.45. The 
discontinuous transition between these phases occurs at a = a,  = 0.145 * 0.01, where 
a = P /  N (Amit et al 1987). 

This letter is motivated by the observation of the following interesting fact, which 
happens in the spin-glass phase. If the system is initialised in the vicinity of a prototype, 
then it starts evolving in the direction of this prototype, but eventually gets captured 
in one of the spin-glass attractors (Gardner et af 1987). A similar behaviour is found 
in the retrieval phase for very noisy input patterns (van Hemmen 1987). Thus there 
exists a latent retrieval capacity which could be tapped. The aim would primarily be 
not so much the increase in storage capacity, although this does happen, but the 
possibility of retrieving very noisy patterns (van Hemmen 1987). In order to achieve 
this goal, we include a kind of friction term in our model, so that the system gets 
trapped in one of the many metastable states surrounding every prototype (Gardner 
1986, Treves and Amit 1988). This can be done with extreme simplicity, turning on a 
diagonal coupling 

J,i = Jo > 0. (3) 

Obviously Jo does not change the thermodynamics of the Hopfield model, whose 
Hamiltonian acquires an additive constant. Although less obvious, this also holds for 
Little’s model in the T+O limit (Fontanari and Koberle 1987, 1988). The evolution 
equation (1 b )  becomes 

hi ( t )  = c JijSj(  t )  + J0Si( t ) .  (4) 
j # i  

The term JoSi( t )  increases the stability of any configuration for Jo> 0. 
The effect of a positive self-interaction has been discussed in the context of a 

non-local model due to Personnaz et a1 (1986) (see also Kanter and Sompolinsky 
1987): the basin of attraction of the retrieval states is severely reduced. However this 
assertion assumes implicitly the existence of these states. 

What we will show by numerical simulations is that for appropriately chosen values 
of Jo we can create retrieval states, where they did not exist before, i.e. in the spin-glass 
phase. Increasing Jo beyond this value introduces damaging effects as also observed 
in the model of Personnaz et al. 

In figure 1 we show the equilibrium retrieval overlap (2) as a function of the initial 
retrieval overlap 

for a = 0.1, 0.3 and 0.4. Maintaining the realisation of prototypes and initial configur- 
ations we repeat the experiments for several values of Jo.  

For a = 0.1, figure l (a) ,  the system remembers if moa0.4, since m is nearly equal 
to 1. On the other hand, as expected, for large values of Jo,  e.g., J o 2  1 the system 
does not evolve much, becoming useless as an associative memory. The best retrieval 
capacity was found for Jo 5 0.25. 

For appropriate values of Jo ,  the system remembers even for a = 0.3 or a = 0.4 as 
shown in figures l ( b )  and l (c) .  

In figure 2 we show that there exists, for fixed a, a best value for Jo which maximises 
the equilibrium retrieval correlation. 
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Figure 1. The equilibrium retrieval overlap m as a function of the initial overlap mo, for 
Jo = 0 (0), 0.25 (U), 0.5 (A) and 1.0 (i), for N = 200. ( a )  For a = 0.1 the system remembers 
except for J,, = 1.  ( b )  For a = 0.3 the system still remembers for J ,  = 0.25 and 0.5 although 
the retrieval is poorer than for a = O . l .  (c) For a =0.4 the system remembers only for 
Jo = 0.5. The broken lines are m = m,. Each point is averaged over 1000 initial states. 

In order to display the ability of Jo to trap the system in a non-equilibrium state 
for small evolution time, we show in figure 3 the relaxation time plotted against Jo .  
For Jo > 0 and a > 0.145 equilibrium is attained much faster than for Jo = 0. We believe 
that the increase in relaxation time for a < 0.145 is due to a competition between 
thermodynamic and non-equilibrium retrieval states. 

Simulations for asynchronous models yield essentially the same results. 
Although the increase in storage capacity is much smaller than that obtained by 

modifying the learning rule (Gardner 1987), our method is an extremely simple way 
to put latent retrieval states to good use in the Hopfield-Little model and allows 
retrieval of patterns in the presence of a large amount of noise. 

The research of RK is partially supported by CNPq and JFF holds a FAPESP 
fellowship. Simulations were carried out on a VAX 780/ 11 computer. 
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Figure 2. The equilibrium retrieval overlap m plotted against for a = 0.1 (0), 0.2 (A), 0.3 
(0), 0.4 (U) and 1.0 (+  ). The initial state has an overlap m, = 0.6 with one ofthe prototypes, 
and N = 200. 

JO 

Figure 3. The normalised relaxation time T,/T, plotted against J, for a = 0.1 (0), 0.2 (A), 
0.3 (0), 0.4 (U) and 1.0 (+), where 7, = ~ ~ ( 0 )  = 7,(J0 = 0, a). The initial overlap is m, = 0.6, 
and N = 200. 
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